
International Journal of  Theoretical Physics, Vol. 35, No. 1, 1996 

Flat Connection Contribution to Topology Changing 
Amplitudes in an Ensemble of Seifert Fibered 
Homology Spheres 

Vladimir N. Efremov 1 

Received August 13, 1995 

The Fintushel-Stern pseudofree orbifolds are exploited to construct wave 
functions of universes created as a result of the interaction of cones on lens spaces. 
We also study the problem of the definition of topology changing amplitudes 
for tunneling topology changes, described by cobordisms with Seifert fibered 
homology sphere boundaries. It is demonstrated that such topology changes are 
accompanied by creation or annihilation of the lens spaces. The topology-changing 
amplitude calculations are carried out in the stationary phase approximation for 
Kodama wave functions. In this approximation the changing amplitudes factorize 
and they are expressed by means of Chern-Simons invariants of fiat connections 
over Seifert fibered homology spheres and lens spaces. 

1. INTRODUCTION 

The problem of changing topology has been discussed from different 
points of view in both classical and quantum gravity (Horowitz, 1991). 
From the conceptual point of view a future quantum theory of gravitation is 
dependent on a resolution of this problem. In addition, the investigation of 
topology changes may bring a new approach to the early cosmology of the 
universe (Hawking, 1988; Weinberg, 1989) and in particular a resolution of 
the cosmological constant question (Coleman, 1988; Klebanov etal., 1989), as 
well as fixing othel fundamental constants of nature (Preskill, 1989; Weinberg, 
1989). But the complicated dynamical structure of Einstein's field equation 
and difficulties in the 3- and 4-dimensional topologies does not allow one 
to achieve in the (3 + 1)D gravity at least the same level of understanding 
of the topology change problem in the (2 + 1)-dimensional case (Witten, 
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1988, 1989). However progress has been achieved recently in this direction. 
It is based on the development of a new approach to low-dimensional space 
topology established by gauge field theory [see, for example, reviews by 
Freed and Uhlenbeck (1984), Okonek (1991), and Rozansky (1995)]. On the 
other hand, progress has been initiated by the ideas of Ashtekar et  al. [see 
for review Ashtekar (1991)] of an alternative representation for Hamiltonian 
general relativity (GR). In the same way as in (2 + 1)D gravity (Witten, 
1988; Ashtekar et  al., 1989), Ashtekar's method permits one to formulate 
GR in connection (Jacobson and Smolin, 1988) and loop (Rovelli and Smolin, 
1990) representations. But this approach gives a possibility of defining a 
complete set of dynamical variables for gravity only in a (2 + 1)-dimensional 
toy model. A reason, in particular, is that the solutions of (2 + I)D Einstein 
equations are flat Poincar6 connections. These are characterized by their 
holonomy along generators of the fundamental group -trl(~ 2) of the spacelike 
2D section ~2 of the 3-dimensional space-time. In the case of topology 
changes in 4-dimensional space-time, we also can restrict our consideration 
to the equivalence classes of flat connections on 3D sections of 4-dimensional 
cobordism, which describes the topology change. Then the loop variables 
(Rovelli and Smolin, 1990; Ashtekar et  al.,  1992) are defined uniquely on 
homotopy equivalence classes of loops. 

We make one more observation of the (2 + 1)D toy model. It was 
demonstrated (Martin, 1989; Furuta and Steer, 1992) that in 3-dimensional 
gravity it is possible to introduce a nontrivial dynamics by allowing conical 
singularities representing point particles. Analogously it might be useful to 
enrich the (3 + 1)D theory by admitting one-dimensional exceptional orbits 
(fibers) corresponding to string structures. It is known (Eisenbud and Neum- 
mann, 1985) that the Seifert fibers and the Seifert links provide an appropriate 
model of spacelike sections which have such exceptional orbits relative to 
the action of the group S l [--- U(1)]. Examples of spaces which admit the 
natural Seifert fibers are homology spheres and lens spaces (Scott, 1983). 
We consider precisely this type of manifold as admissible 3-dimensional 
sections of Euclidean space-time cobordisms describing topology changes. 
Such an ensemble of 3-dimensional manifolds makes it possible to describe 
an interlacement (splicing) of Seifert fibers as a result of topology change. 
It is possible to connect this phenomenon with a refinement (or simplification) 
of the structure of the universe as a consequence of different phase transforma- 
tions, for example, a breakdown (or restoration) of symmetry, i.e., a change 
of a number of the fundamental interactions in the universe. In addition it 
would be attractive to interpret the topology changes in terms of elementary 
particle processes. 

Section 2 gives basic definitions and notations. 
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In Section 3 elementary cobordisms of two types are constructed. They 
are used as constituent parts for formation of the various 4D spaces describing 
topology changes. 

A procedure of sewing together elementary cobordisms is formalized 
in Section 4 by means of the well-known topology operation of "splicing." 

Section 5 describes a naive method for transition from the Lorentzian 
region to the Euclidean domain and conversely, when the collection of homol- 
ogy spheres are boundaries of the Euclidean regions with a flat connection 
on them. The Ashtekar canonical variables are used for this description. 

In Section 6 the topology changing amplitudes are constructed in connec- 
tion and loop representations. A stationary phase approximation is utilized. 
The basic assumption is that all physical quantum states are represented in 
the expansion form with respect to Kodama wave functions (Kodama, 1990). 

2. B A S I C  N O T A T I O N S  A N D  D E F I N I T I O N S  

The fundamental objects of our investigation are the lens spaces, Seifert 
fibered homology spheres (Sfh-spheres), and cobordisms with boundaries, 
which are different combinations of these spaces. For completeness, we 
recall the definitions and notations for these manifolds (see, for example, 
Rolfsen, 1976). 

The lens space L(a,  b) (a, b e Z, a > 1) is a factor space of 

S 3 =  {z,w[Izl 2 + l w l  2 =  I} 

with respect to the free action of the group Za C S l; this action is defined 
by (z, w) = (~bZ, ~W), where ~ = exp(2"rrila). Consequently, a fundamental 
group of L(a,  b)  is 

"rq(L(a, b)) ~ Za (2.1) 

It is natural to define Seifert fibered homology spheres E a(_q.) -- ~(at, 
. . . .  an) (Fintushel and Stern, 1985) beginning from the notion of a Seifert 
fibered manifold with invariants (ai, bi), i = 1 . . . .  , n (ai, bi ~ Z ,  ai > 1; 
ai, bi are relatively prime for each i). 

The Seifert fiber manifold is a 3-dimensional manifold E a(_q) with the 
pseudofree S l-action. The pseudofree S l-action is a smooth action such that 
it is free except for finitely many exceptional orbits $1 . . . . .  Sn with isotropy 
groups (stabilizers) Za~ . . . . .  Zan, respectively, where al . . . . .  an are pairwise 
relatively prime. Thus the Seifert fibered manifold ~ a(.~) is endowed with the 
structure of S ~-fibering (Seifert structure), with base space (Fintushel-Stern 
pseudofree 2-dimensional orbifold) 

~,(a) /S l = S2(al  . . . . .  an) - S2(a)  (2.2) 
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which is homeomorph ic  to the sphere S 2 (underlying Riemann surface). 
The  orbifold S2(a_) possesses n exceptional  cone points (with conical  

angles 2"tr/ai, i = l . . . . .  n). 
To the end o f  assigning the Seifert  structure more  explicitly, let us 

consider  an n disjoint open tubular (torus) ne ighborhood 

TS 1 = ( S  1 X D 2 ) I  . . . . .  TSn = ( S  I )< D2)n 

of  exceptional  fibers St . . . . .  Sn. Then  by definit ion o f  a Seifert  fiber, there 
exists a trivial S t-fibering 

p: E0 --) F0 (2.3) 

~o  = ~ - TS~ u . . .  u TSn 

Fo = S2 - D2 LI . . .  Id D~ 

(the symbol  LI denotes disjoint union and the disc D 2 is a ne ighborhood o f  
i's cone point). 

If  R C ~0 is a (cross) section, then xi = - O R  1"3 TSi is a toms curve 
(link) i = I . . . . .  n. I f  h is a typical orbit (fiber) o f  S t-fibering p, then the 
curve aixi + bih is homologic  to zero (it is a boundary of  some surface) in 
TSi. The  fundamental  group presentation o f  a Seifert  f ibered manifold is 

'rrl(~(a)) = (xl . . . . .  Xn, h[hxih- tx71 = 1, x~ih bi = 1, xt " '"  xn = 1) 

(2.4) 

The  group S 1 acts freely along a typical fiber h, and in the tubular neighbor-  
hood TSi = (S I • D2)i of  the exceptional  orbit Si this S l-action is 

t o (s, z) = (tais, t~z)  

w h e r e c r i =  alai, a = at " " a n ; ( s , z )  e S t X D 2 ,S  t C C , D  2 C C. 
An oriented Seifert  f ibered manifold E(_a_) - E(a t  . . . . .  an) with invari- 

ants { (ai, bi) I i = 1 . . . . .  n } satisfying 

ab i~ i  = 1 (2.5) 
i=1 

[(al . . . . .  an) being pairwise relatively pr ime and ai, bi relatively pr ime for  
every  i] is called a Seifert f ibered homology sphere (in short, homology  sphere 
or Sfh-sphere).  

It is possible to calculate f rom formulas (2.2) and (2.4) a fundamental  
group o f  the orbifold: 

'rrl(S2(a)) = ~r(E(a)lS I) = "rr(~(a))/(h) 

= (xl . . . . .  xnlx7 ~ = 1, xl " '"  xn = 1) (2.6) 
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where (h) is the center of  ~ ( ~  a(_q)). This presentation shows that the group 
"a't(S2(a)) is isomorphic to a Fuchsian group of  genus 0. 

We give now the definition of a cobordism (see, for example, Freed and 
Uhlenbeck, 1984): Let M be a compact manifold. Submanifolds No, NI C_ 
M are cobordant in M if such a compact submanifold C C M • [0, 1] exists 
t h a t 0 C =  No • O I.J N~ • 1. 

The cobordism is both the equivalence relation between No and Nl and 
the space C itself. The factor [0, 1 ] may be interpreted as the time when the 
cobordism C transforms the submanifold No to NI. 

3. E L E M E N T A R Y  C O B O R D I S M S  W a(_q.) a n d  W0(_q) 

Now we pass to the construction of cobordisms W(_a_) and W0 a(_a_). They 
will be used as the main constructive blocks for creation of the 4-dimensional 
spaces describing topology changes in the ensemble of  Sfh-spberes and the 
lens spaces which accompany the Sfh-spheres inevitably if the cobordisms 
do not have singular points. Factorization of  the Sfh-sphere ~ a(_q) by S l may 
be considered as an orbit map 

w: ~(a)  --> S2(a) (3.1) 

[this results in the orbifoldS2(.q_)]. Let ~ a(_a_) • [0, 1] be a cylinder. Factorization 
of  its "lower bound" ~(_q) • 0 by the pseudofree S l-action gives a 4- 
dimensional space W(_q_) = W(al . . . . .  an) which is called a cylinder of the 
orbit map w. Since the S l-action in ~ a(_q_) is pseudofree with the exception of  
n isolated exceptional orbits with isotropies Za~ . . . . .  Zan, then W a(_a) is a 
pseudofree orbifold (Fintushel and Stern, 1985) or V-manifold (Kawasaki, 
1978). The orbifold W a(_a_) is a smooth manifold with the exception of n 
isolated singularities ci whose neighborhoods are the cones ci * L(ai, bi) on 
lens spaces L(ai, bi), i = 1 . . . . .  n, corresponding to the exceptional orbits 
in ~(al  . . . . .  a~) = ~ a(_q), which is the boundary of W(_a_). Let W0(_a_) denote 
W a(_a_) with open cones around the singularities removed: 

n 

W0(a) = W(a_) - I I  int(ci * L(a/, bi)) (3.2) 
i=l  

We now have the smooth manifold W0 a(_a_) with a boundary 
n 

OWo(a) = - I  ! L(ai, bi) H ~(a_) (3.3) 
i = 1  

where the minus sign marks opposite orientations of  the lens spaces. It is 
important to observe (Fintushel and Stem, 1990) that the fundamental group 
of Wo a(_a_) is isomorphic to "rrt(SE(g)): 

"rrl(Wo(a)) = (xl . . . . .  x~l~'  = 1, xl "'" x, = 1) (3.4) 
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The boundary OW(g_) = E a(g_) can be interpreted as a spatial section of 
the universe created at the singular points of n cones on the lens spaces 

n 

[ I (Ci * L(ai ,  hi)) 
i=1 

with different vertices {ci}. But it is possible to identify all these vertices ci 
C" 

Thus from our point of view, the orbifold W a(,.q) is a cobordism describing 
a topology transformation of the type 

(vacuum) ~ (S~-sphere) (3.5) 

The cobordism W0 a(_q) can be treated as a topology change from the lens 
spaces t-li~l L(ai, bi) (in-state) to the universe with space section homeomor- 
phic to the SN-sphere E(al . . . . .  a,) = E(_q) (out-state) and conversely. 

Gluing together different elementary cobordisms of types W(_q) and 
W0 a(_q_) will give us various examples of 4-orbifolds and 4-manifolds which 
exhibit topology transformations. For a correct definition of sewing operations 
we take advantage of one well-known topology operation known as splicing. 

4. HOMOLOGY SPHERE SPLICING AND TOPOLOGY 
CHANGE SEWING 

Let 

~(ao , i )  : '~(ao,  a l  . . . . .  a i )  

and 

E(ai+t,n+l) = ]~(ai+l . . . . .  a,,, an+t) 

be two Sfh-spheres, where al . . . . .  a. are pairwise relative primes. Let TSo 
be an open tubular neighborhood of exceptional orbit So in the Sfh-sphere 
E(_a_o.i), and TS.+t be an open tubular neighborhood of exceptional orbit S.+l 
in ~(_qi+l~,+O. We introduce the standard pairs of meridians and longitudes 
(m0, lo) and (m.+l, l.+1) on boundaries of 

Ko,i = 2(_ao, i) - TSo 

and 

gi+l,n+l = 2 ( a i + l , n + l )  - -  TS,,+l (4.1) 
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respectively. By sewing these manifolds according to rules m0 = ln+l and 10 
= m,+~, we obtain an Sfh-sphere 

~ ( a l  . . . . .  an) -" E(ao ,  a t  . . . . .  ai) # ~(ai+l  . . . . .  an, an+l) (4.2) 

if and only if 

ao = ai+l " '"  an; an+l = al  " '"  ai (4.3) 

The operation (4.2) is known as splicing (Eisenbud and Neumann, 1985). A 
simple observation is that (4.3) is a condition for gluing Seifert structures on 
the boundaries of Ko,i and K i + l , n + l -  The standard fiber o n  OKo, i is represented by 

ho,i = aolo -k- o'om 0 

where (to = al  " '"  ai,  and analogously the standard fiber on bKi+l.n+l is 

hi+l,n+ 1 = an+lln+ 1 q- orn+lmn+ 1 

where trn+l = ai+l " '"  an. Thus for sewing ho,i = h = hi+t~,+l, the equalities 

ao = trn+t and an+l = (to (4.4) 

[which are the same as in (4.3)] are sufficient. 
If the splicing operation is repeated (n - 2) times, one obtains an 

arbitrary Sfh-sphere from s i m p l e s t  Sfh-spheres, i.e., Sfh-spheres which have 
the minimal number (m = 3) of exceptional orbits: 

"2(a  . . . . .  an) = #n---lz •(al " ' "  ai, ai+l, ai+2 " ' "  an) 

n--2 i an+2) (4.5) = #i=l]~(al,  ai+l, 

(Here and below we use the abbreviations a'l = al  " '"  ai; a n = ai " '"  an.) 

Thus, when .considering topology changes, we naturally pay special attention 
to the following fragment of the splicing sum (4.5): 

~(a i  -1, ai, ai+l, an+2) = ]~(a~ -I ,  ai, aT+l)#~,(ail, ai+l, an+2) (4.6) 

which we shall utilize for constructing a simple s e w e d  cobordism ff'[,i+~ = 
f f '(a] - l ,  ai, ai+l, ai"+2), which exhibits the decomposition of a universe homeo- 
morphic to one Sfh-sphere into two universes homeomorphic to a sum of 
two simplest Sfh-spheres. 

Let us begin with a construction of orbifolds W/, W,,i+l, which are cylin- 
ders of  the orbit maps: 

wi: ~ i  ---> $2; 

where 

~i = ~(a~ -1, ai, a/n+l); 

S/2 = S2(a~ -t ,  ai, ain+l); 

Wi.i+l: ~i,i+l ---> S~.i+l (4.7) 

~i,i+l ~- ]~(a] -1, ai, ai+l, ain+2) 

Si2i+l ~- S2(ai -1, ai, ai+l, ain+2) (4.8) 
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By analogy with (3.2), we remove from the orbifolds W/, ~,i+i the open 
cones around the singular points, and obtain elementary cobordisms: 

Woi = W0(ai -1, ai, an+l); Woi, i+l = W0(a~ -1, ai, ai+l, a~i+2) (4.9) 

These cobordisms correspond to topology changes: 

(set of lens space) ---> (Sfh-sphere) (4.10) 

since they have the boundaries 

(gWoi = - (L~ -I  I..I L i  I I L~+l) U ~,i (4.11) 

OWoi.i+t = - (L~  -I I..I Li U Li+l U L7+2) U ~,i.i+t (4.12) 

where L~ = L(ai, bi), Li = L(ai, bi), LT+t = L(a~+l, ~+l). 
Changing the orientation of the cobordism Woi, i+~ and sewing it together 

with cobordisms Wol and Woi+t, we obtain a new cobordism 

W~)i,i+l = W~(a~ -1, ai, ai+l, a~+2) (4.13) 

The index s indicates that this cobordism has been sewed along the lens 
spaces Li - l ,  Li, Li+l, L7+2, whose invariants are written in parentheses. This 
cobordism has the boundary 

OW~i,i+l = - ( L i ,  i+ 1 II L~ IA LT+l) U (L i U Li+I) (4.14) 

and can be put in correspondence with a topology change of type 

--(Li,i+ I U L~ Li Lin+l) = L in ~ L ~ ~-- (L i U Li+I) (4.15) 

A similar cobordism was first investigated by Siebenmann (1979), there- 
fore the index s may be associated with the first letter of his surname. 

It is possible "to remove" the lens spaces L't and L,'-%l off the cobordism 
boundary (4.14) if one glues along these lens spaces the cones 

C I * L~ and c2 * L~+t,  or  c * (L~ U LT+l),  cl ---- c - -  c2 

We have obtained a cobordism ~ s Wi,i+l with two singular conic points ci and 
c2 (one may identify cl -- c ---- c2). It "describes" a topology transformation 

- -~ i , i+l  II  C = ~in _.~ Lout = ~i II ~i+l (4.16) 

where the caret over Ein and IA c tell us that the "in-state" has the singular 
point c. We can interpret the cobordism ^ s Wi.i+l in physical terms as splitting 
the universe "s (Sfh-sphere) into the universes Ei and L,-+t (two Sfh- 

�9 t l  spheres) induced by the vacuum creation of two lens spaces L't and Li+~. 
We associate the topology change process 
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Z(al.n) U c = ~i, ___> Eout = Z(_a0.i) LI ]~(ai+t.n+t) (4.17) 

which corresponds to the splicing operation (4.2), with the cobordism 
W~(a0, al . . . . .  an, an+m) with a boundary: 

aff'~(a0, am . . . . .  an, an+l) = -]~(at~) LI E(a0,i) I..I ]~(ai+l.n+l) (4.18) 

This cobordism is a result of  sewing together elementary cobordisms W0(ab 
. . . .  an), Wo(ao, al . . . . .  ai), and Wo(ai+l . . . . .  an, an+l) along the lens spaces 
L(ai, bi), i = 1 . . . . .  n, and pasting up two components L(a0, b0), L(an+l, 
bn+l) of  its boundary by means of  the cone c * (L(ao, bo) LI L(an+l, bn+0). 

A more complicated case of splicing (4.5) is associated with a topol- 
ogy change 

n-2  
~ ( a l . n  ) I I  C : ~in ~ ~out : U ~(a~, ai+t, aJ'+2) ( 4 . 1 9 )  

i=1 

A cobordism describing this topology transformation is sewed of the simplest  
cobordisms Wo(ai, ai+l, a7§ i = 1 . . . . .  n - 2, and of the cone on lens spaces 

n--2 
c * I I  (L(a], b]) II L(a~+l, b~/+l) ) 

i=l 

5. S E W I N G  T O G E T H E R  E U C L I D E A N  AND L O R E N T Z I A N  
R E G I O N S  

In Section 4 we have explicitly constructed cobordisms with Euclidean 
signature which can be  interpreted in terms of  topology changes. In other 
words, we actually consider topology transformations as a quantum tunneling 
phenomenon, i.e., transitions through classically forbidden regions, for 
example, ff'6(ao, al . . . . .  an, an+l) with Euclidean signature. The picture of  
our semiclassical approach would be incomplete if we did not define the 
procedure of  sewing together Euclidean and Lorentzian regions along a 
boundary, which in our case is a disjoint union of  Sfh-spheres and, sometimes, 
lens spaces. Let us discuss sufficient boundary conditions for sewing gravita- 
tional fields, expressed via Ashtekar  variables in connection representation. 

The classical canonical variables of Ashtekar et al. (1989) (see also 
Jacobson and Smolin, 1988) are an SO(3, C) spatial connection A / and a set 
of  triads (or frame fields) of  a foliation of  space-time/~a, where a is a spatial 
index on a spacelike section E and i is a flat Euclidean index which can be 
thought of  as an S0(3 ,  C) index (a tilde denotes the density weight). The 
S0(3 ,  C)-connection may be identified with a spatial pullback of  the self- 
dual part of  the spin-connection. 
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These variables parametrize the phase space of complex general relativ- 
ity. A real metric with Lorentzian signature may be recovered by imposing 
appropriate reality conditions (Ashtekar et al., 1989):/~/~bi is real, and its 
time derivative is real, too. A metric of Euclidean signature is obtained by 
taking A~a and / ~  as real (Capovilla et al., 1995). Thus in the Euclidean 
regime we can obtain a SO(3)-bundle V with the connection A/~ over the 4- 
dimensional manifold fro. This SO(3)-bundle is lifted to an SU(2)-bundle if 
the second Stiefel-Whitney class w2(V) vanishes. In this case the gravitational 
instantons are described exactly as SU(2) gauge fields (Capovilla et al., 1990). 

The observations stated above along with the results of Halliwell and 
Hartle (1990) and Fujiwara et al. (1992) (on vanishing of an extrinsic curvature 
Kab = 0 on a boundary between Euclidean and Lorentzian signature regions) 
yield the following conclusion: the sufficient conditions for sewing together 
Euclidean and Lorentzian domains consist o f  triviality of the connection 
A i and reality o fE  a on each component of  the boundary. We have restricted 
our consideration (or approximation) to the equivalence classes of fiat connec- 
tions over Euclidean cobordisms (of f '  type). To obtain a trivial connection 
O on the boundary 

191~/s ---~ L in I I  L ~ ( 5 . 1 )  

it is sufficient to sew collars, i.e., to construct the cobordism (see, for example, 
Freed and Uhlenbeck, 1984) 

fs,coll _~. (Lin X [--1, 0]) U f s  U (Lout x [0, 11) 
•in xout 

(5.2) 

and to define the paths 

A, = (1 + t)A in - tO, 

At = (1 - t)A ~ + tO, 

t ~ [ -1 ,  0] (5.3) 

t ~ [0, 1] (5.4) 

of connections on the collars (Okonek, 1991). 
Furthermore, to the boundaries of the cobordism f~,con, the "ends" 

~in X R- and L ~ X R+ 

with the Lorentzian signature (where R_ = (-0% -1] ;  R+ = [+ 1, +oo)) are 
pasted up. At the points t = - 1  E R_ and t = + 1 E R+, the Lorentzian 
connection is trivial. 

If the lens spaces L(al, bi) enter the boundary of a cobordism, then they 
must be pasted up by collars and thereupon by Lorentzian "ends." 
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6. FLAT CONNECTIONS OVER COBORDISMS 

6.1. Wave Functions in the Connection and Loop Representations 

There exists a well-known solution to all the constraint equations of 
general relativity with a cosmological constant in the connection representa- 
tion (Kodama, 1990; Brtigmann et al., 1992). This is the exponent of the 
Chem-Simons functional 

�9 [A]= exp( - 1  CS[A]) (6.1) 

' I  ( ) CS[A] = ~ ~abc Tr AaObAc + ~ AaAbAr (6.2) 

Serious arguments were given (Smolin, 1995) in support of the proposal 
that all physical quantum states in the loop representation are expressed by 
means of the Kodama states via the transform 

�9 [gl]=f[dA]exp(-1CS[A])TrPexp~a~d~ (6.3) 

where "y is a loop in a spacelike section E. 
We restrict ourselves to calculation of the path integral (6.3) in the 

stationary phase approximation. The relation 

1 ~b~F~[A ] (6.4) 
BA~ ~[A] - 4,ff2~. 

demonstrates that the flat connections (F~, = 0)are  critical points of the 
Chern-Simons functional [as a Morse function on the orbit space of connec- 
tions over E modulo gauge invariance (Okonek, 1991)]. Consequently in the 
connection representation the fiat connections are stationary points of the 
wave function phase. Thus we restrict ourselves to evaluation of the path 
integrals on a modulo space R(~) of flat SU(2)-connections over a Seifert 
fibered 3-manifold ~(Fintushel and Stem, 1990). 

We recall several key observations about the modulo space R(~) of flat 
SU(2)-connections over ~ (Kirk and Klassen, 1990; Okonek, 1991; Saveliev, 
1992). 

1. The space of flat SU(2)-connections (modulo gauge equivalence) is 
homeomorphic to the space of representations of the fundamental group of 

in SU(2) (modulo conjugation): 

R(5~) --- {alot: "rrl(~) ~ SU(2)]/conj (6.5) 

2. Two flat connections AI and A2 which lie on the same component 
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of the space R(E) have the same Chem-Simons invariant CS[AI] - CS[A2] 

(mod 4). 
3. Let E be a Sfh-sphere E(_a_) = E(a~ . . . . .  an); then the set of connection 

components of R(E(a~) is in one-to-one correspondence with the set of admis- 
sible collections of the rotation numbers CO = (ll . . . . .  In), which completely 
specify the class a of irreducible representations of "rrl(E a(_a_)) in SU(2). Thus 
CS[A] = C S ( ~ .  

Furthermore, for a flat connection, the holonomy along a loop depends 
only on the homotopy class of the loop and consequently is defined on 
the elements of R(~ a(_q)). This means that loop variables of Rovelli and 
Smolin (1990) 

Tr et('y) = Tr P exp q~ Aa dx  a (6.6) 
d .y 

are defined uniquely on the loop homotopy classes. A basis in the loop 
variable space (i.e., in a configuration space of Wilson loops) consists of the 
homotopies along nontrivial loops xi which generate the fundamental group 
arl(E a(_a_)) in the form (2.4). A complete collection of invariants that specify 
the representation ~t is {Tr ot(x;)li = 1, . . . ,  n}. 

4. Fintushel and Stem (1990) have demonstrated that these invariants 
are determined by the rotation numbers (_0 = (ll . . . . .  /n): 

Tr ot(xi) = 2 cos(arli /ai)  (6.7) 

and consequently are fixed in the limits of the same component of the 
space R(E a(_a_)). 

In this case the value Tr ot(~) = Tr Hi ot(xi) is determined also uniquely 
by a connected component of R(E a(.q_).) [or, equivalently, by (_/)]. 

Finally, each rotation number li is an element of Zai, hence it has a finite 
number of different values. Thus the path integral (6.3) in the stationary phase 
approximation is represented as a finite sum of contributions of connected 
components of the flat connection moduli space R(E(_q)) (Rozansky, 1995), 
i.e., the integral (6.3) is reduced to a sum over admissible collections (_/) = 
(ll . . . . .  In): 

where C(.O is a weight multiplier. When ~ = xi we have the explicit expression 

*[xi] = ~ C(_/) e x p ( - 1  -~)2 cos(~/" ) (6.9) 

where 
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e = ~ l i f f i ;  a = al "'" a,,; cr = a/ai (6.10) 
i=1 

Now let us consider a cobordism ff'~ with a boundary 

0~/~ = •1 I I  "-" I I  "~-~M I I  ( - -EM+I )  I I  . - "  I I  ( - -EN)  = ~out IJ ~in (6 .11)  

where 

and 

Let ek be given by 

M 

~ o u t ~  H ~k 
k=l 

N 
~ i n = _  H ~k 

k = M +  t 

ek = + 1 if k = 1 . . . . .  M 

ek = - 1  if k = M + 1 . . . . .  N (6.12) 

In this case the Chem-Simons invariant of the cobordism ff'~ is of the form 

CS[A]=-~-~2ICv FA^FA 
6 

1 e "be Tr aObAc + -~ AaAsAc = ~. ekCS(l k) (6.13) 
8~2 ~'6 k=t -' 

In this expression (l_ k) = (l~ . . . . .  l~) is a collection of admissible rotation 
numbers for boundary component with the number k. 

The Kodama wave function in the connection representation (6.1) for 
the Sfh-sphere ~ a(_q) is 

'It(_/) = C(_/)exp( - 1  CS(_l)) (6.14) 

and it may be generalized in the case of the cobordism I$'~ with the multicom- 
ponent boundary (6.11) (see, for example, Section 6 of Dijkgraaf and Witten, 
1990) as 

~ (  It . . . . .  lN) = l-I C(lk) exp - ~  CS(l k) (6.15) 
- - k=l - - 
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It is possible to choose the orientation of  the cobordism ff'[ so that 

N 
~CS(I k) >- 0 (6.16) 

k = 1 

The wave function (fi la Kodama) (6.15) in this case is a topology changing 
amplitude corresponding to the cobordism ff'~. 

6.2. Homology Sphere from Vacuum ("Nothing") 

Let us consider (without details) the simplest topology change (3.5) 

(vacuum) ~ c ---> ]~(al . . . . .  an) -- (Sfh-sphere) (6.17) 

We recall that the cobordism W(_q_) = W(al . . . . .  an) which describes this 
topology transformation has n singular points with neighborhoods homeomor- 
phic to the cones on lens spaces L(ai, bi) (i = 1 . . . . .  n). The topology change 
amplitude of  the process (6.17) is 

xtt(_/) = C(_/)exp( - 1  CS(_l)) (6.18) 

where / is an admissible collection of  rotation numbers (l~, . . . ,  In). One 
would like to interpret the wave function (6.18) as a probability amplitude 
of  creation of a universe with Sfh-sphere spatial section E(al, �9 �9 �9 an) from 
the singular vacuum state c through the cone Lli%l (c * L(ai, bi)). In this case 
it is necessary to be cautious. As is well known, the Chern-Simons functional 
CS[A] is not invariant under large gauge transformations. Then, it trans- 
forms as 

CS[A] ---> CS[A] + 4n, n ~ Z (6.19) 

By virtue of  this indefiniteness, the exponent in the wave function (6.18) is 
also indefinite. We suggest to use a "cosmological constant" h to compensate 
this indefiniteness. In the normalization of  the CS[A] accepted here (Fintushel 
and Stem, 1990), the gauge-invariant value of the Chem-Simons  functional 
is defined modulo 4. Fintushel and Stern (1990) and Kirk and Klassen (1990) 
have demonstrated that 

CS[A] = CS(_I) -- e2/a (mod 4), where e = ~ lt~Y i (6.20) 
i= l  

We determine the Chem-Simons  invariant value in the exponent (6.18) as 
the least nonnegative residue of CS(_O modulo 4. In this case it is natural to 
define the magnitude of the "cosmological constant" as a preferred value of  
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Chern-Simons invariant for the Sfh-sphere X a(g_). In their article, Fintushel 
and Stern (1990) calculated the quantity 

"r(X(a)) = min{CS[A] [A E R ( X ( a ) ) }  - - -  
1 1 

a l  �9 " " a n  a 

(6.21) 

We think that k may be defined as 

1 
k = 'r(E(a)) = - (6.22) a 

Thus the expression (6.18) takes the form 

4(_/) = C(/) exp ( - e  2) (6.23) 

where e 2 is in fact the least nonnegative residue of CS(OIK (mod 4a). 
It is easy to demonstrate (Fintushel and Stern, 1990; Kirk and Klassen, 

1990) that 

e 2 =-- ~ (lio'i) 2 (mod 4a) (6.24) 
i = l  

Thus in the stationary phase approximation a partial factorization of the 
universe creation amplitude takes place: 

4(_/) = C(/) FI exp[-(/,xri) 2] (6.25) 
i=1  

Kirk and Klassen (1990) also calculated the Chern-Simons invariants of lens 
spaces. Their results give the possibility to rewrite 4(_0 as 

Birmingham (1995) has observed such a factorization property of the 
topology changing amplitude in a similar topology situation, but in another 
approximation [the Regge calculus approach in a simplicial minisuperspace 
for the cone c * (I.-l~=l L(p, 1))1. 

In order to Change from a Euclidean regime to a Lorentzian one, it is 
necessary to glue up a collar ~ a(_q) X [0, 1] with connection At = (1 - t)A(l) 
+ tO, where A(D is a fiat connection over the boundary OW(_a_) (to which 
the collar is glued), and O is a trivial connection. (The general method has 
been described in Section 5.) Thus it is natural to suggest that the transition 
amplitude for the process c ~ ~(g)Lor is equal to 

~(X(a)t~r) = ~ C(_/) exp(--e 2) (6.27) 
l 
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where X(.q_)Lor is a spacelike section in the Lorentzian "end" (X(9_) • R+)Lor 
pasted up to a boundary X(_q_) • { 1 } of the collar. In (6.27), the summation 
is taken over admissible collections (_0 = ( l , . . . ,  In) of  rotation numbers. 

It may be also suggested that the weight coefficients C(_0 are proportional 
to C 2"-6, where C = const, and m is the number of  the rotation numbers in 
the admissible collection (_0 = (/i . . . . .  l,) which are not zero. This estimate 
is made in accordance with the fact that the connected component of  the 
moduli space [with the collection (11 . . . . .  /,)] has dimension 2m - 6 (Fintu- 
shel and Stern, 1990). 

6.3. Splitting of a Universe: A General Consideration and Examples 

The situation is more complicated when a topology change cobordism 
ff'~ is sewed by several elementary cobordisms of  type W0(_a_) (see Section 
4). In order to calculate the topology changing amplitude (6.15) it is necessary 
to define the procedure of  gluing up connections in SO(3)-bundles which are 
prescribed over elementary cobordisms, since not all of  the rotation numbers 
/i . . . . .  /u are independent. In order to sew the flat connections over cobord- 
i sms (orbifolds) we shall use the methods of  Fintushel and Stern (1987, 1990) 
and Saveliev (1992). 

If  2~(.q_) is a Seifert fibered homology sphere, then there exists a one-to- 
one correspondence between equivalence classes of  representations ot of  
"rq(X a(9_)) into SU(2) and equivalence classes of  representations t~ of  "rq(W0 a(_a_)) 
into SO(3), which make up the moduli space R(Wo(.a)). Thus R(X a(_a_)) 
R(Wo(.q_)) (Fintushel and Stern, 1990; Okonek, 1991). Then each 6t E R(Wo(_a_)) 
assigns SO(3)-bund.le V,~ over elementary cobordism W0(_a) with flat connec- 
tion Aa, which is fixed by an admissible collection of rotation numbers (_/) 
= (ll . . . . .  l,), li ~ Zar In the simplest case of  the homology spheres with 
three exceptional orbits X(p, q, r), the space R(Wo(p, q, r)) has a finite 
number of  points. Therefore in this case the fiat connections are isolated 
exceptional points of  the Chern-Simons functional such as the Morse function 
with nondegenerate critical points on the space of  all connections over Wo(p, 
q, r) (Fintushel and Stern, 1990). Calculation schemes for the admissible 
collections (ll . . . . .  In) are developed by Fintushel and Stern (1990) and Kirk 
and Klassen (1990). In particular, the admissible collection must satisfy the 
following conditions: 

li is even if bi is even, or ct(h) = + 1 

li is odd if bi is odd, and ct(h) = - 1  (6.28) 

where bi are defined by b,xri - 1 (modai) .  
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Over the lens space L(ai,  bi) C OWo(.a_.) all SO(3)-bundle V~ is restricted 
to a bundle L~. ~) R, where R is a trivial bundle, and L,~.i is a U(1)-bundle, 
which is characterized by the Euler class 

e ~ H2(L(ai ,  bi)) ~ Zai (6.29) 

To extend the SO(3)-bundle from one elementary cobordism WoA to the 
other Won, the critical observation (Fintushel and Stem, 1990; Saveliev, 1992) 
is that the Euler numbers which classify the U(1)-bundle over L(ai,  hi) are 
expressed in terms of the same rotation numbers which describe the SO(3)- 
bundle over the elementary cobordism W0(_a) = W0(at . . . . .  an). We choose 
a basis in "trl(L(ai, bi)) ~ Z~ i with generator 

acting in the covering S 3 --~ L(ai,  bi). In this basis the Euler number of the 
bundle L~,i is 

e --/ i(mod ai) (6.31) 

Both to the present end and for better understanding of the bundle 
structure over cobordism W a(_q) = W(al  . . . .  , a . )  [corresponding to the topol- 
ogy change (6.17)] it is important to remember that the bundle L~,,i is extended 
through the boundary component L(ai,  bi) C OWo(.q_) over the cone c * L(ai,  
bi) as a SO(3)-V-bundle (Fintushel and Stem, 1987). The rotation number of 
this bundle over the conic point Yi ~ Wa(g) is li with respect to the generator 
g .  (6.30). I think that this is one of the reasons that the universe creation 
amplitude (6.18) factorizes to (6.26). 

Let each cobordism of W~ and W0B have lens spaces L ( a ,  bi), i = 1, 
. . . .  k, as components of its boundary, i.e., 

OWoA D L(ai,  bi) (7_ OWoa, i = 1 . . . . .  k 

We glue together this cobordisms along Llk=l L(ai,  bi). In order to glue the 
cobordisms with SO(3)-bundles over them, it is necessary and sufficient to 

satisfy the conditions 

e A -- e a (mod ai), i = l . . . . .  k (6.32) 

for the Euler numbers, or equivalently 

l A -- l~ (modai), i = 1 . . . . .  k (6.33) 

for the rotation numbers. 
For example, we consider now the cobordism (orbifold) 

^~ = ~'(ail - t ,  ai, ai%2) Wi,i+l ai+l, 
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(see Section 4), which is the result of sewing together the cobordisms if0i, 
if0i+t, and Woi.i§ where the caret indicates that the lens spaces have been 
glued up by the cone c * (L(ai, b~) t..I L(aT+l, bT+O). It is natural to separate 
the boundary 

OifOi,i+l = ( - - ~ i , i + l )  I~ ( ~ i  11 ~ i+1)  (6.34) 

into 

~in = --•i,i+l a n d  E ~ = E i  I1 ~i+I (6.35) 

Then we assume that an admissible collection ~i ,  = (li-l, li, li+l, 17+2) of the 
rotation numbers is given on the in-hypersurface E in, i.e., we fix a flat SU(2)- 
connection o v e r  ~in. 

It is useful tO recall that for the Sfh-sphere Ei.i+~ there is a one-to-one 
correspondence between the flat SU(2)-connection over Ei,i+l and the flat 
SO(3)-connections over Woi,i+~ (Fintushel and Stem, 1990; Okonek, 1991). 
Therefore the admissible collection of rotation numbers (_0 i" can be extended 
over W0i,/+1. Thus we obtain a class of static solutions of Einstein's equations 
with a flat SO(3)-connection corresponding to (D in. [See an analogous situation 
in Section 5 of Smolin (1989).] This SO(3)-connection is restricted over 
L(a~ -1, b~ -1) and L(ai, bi) C OWoi,i+l tO a U(1)-connection with rotation 
numbers l~-l(mod a~ -l)  and li(mod ai), respectively. The sewing condition 
for the connections over Woi,i+l and ifoi means that over L(ai -l, b~ -I) and 
L(ai, bi) C Oifoi, a U(1)-connection with similar rotation numbers l~ -l (mod 
a~ -1) and li(mod ai) must be defined. The rotation number 17+i remains arbitrary 
up to admissibility of the collection (/~-1 li, li%l), which should define a flat 
SO(3)-connection over the cobordism if0i- Analogously the rotation numbers 
li+l, 17+2 are "translated" from the elementary cobordism Woi,i+t to the cobord- 
ism if0i+l with sewing condition of type (6.33) over the lens spaces L(ai+l, 
bi+O and L(aT+2, ~+2)- The rotation number l~ remains arbitrary up to that 
the collection (/'~, li+l,/n+2) must be admissible over the cobordism if0i+l. 

The dimension of each connection component of the moduli space R(2~i) 
is equal to zero (2m - 6 = 0) when m -- 3. Thus it is natural to put 

C(l~ -1, li, ln+l) = C(lil, li+l, /n+2) = C 2m-6 = 1 (6.36) 

in formula (6.15) for the topology change amplitude of the process (4.16). 
Therefore the amplitude of this process is 

afg(l~-I, li, li+l, ln+2, lil, ln+l)=aYg(lk)=Ci.i+lexp(--l~k ~kCS(l_k)) 

(6.37) 

(the connections are fixed over E i" and Eout), where Ci,i+l = C(I~ -1, li, li+l, 
lin+2) and in this case 
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~, ~kCS(1 ~) = CS(li -l, l~, 17+0 
k 

+ CS(lit, li+l, ln+2) - -  CS(I] -1, li, li+l, lin+2) ( 6 . 3 8 )  

Further we utilize the general expression for the Sfh-sphere Chern-Simons 
invariant (Fintushel and Stern, 1990; Kirk and Klassen, 1990) 

CS(1 k) - e21a (mod 4), where e = ~ l,~ri (6.39) 
i=1 

Taking into account (6.28), we have in the case under consideration 

ekCS(1 k) - [(l~an+02 + (l~+laT)2]/a (mod 4) (6.40) 
k 

If we use our definition (6.22) of  the "cosmology constant" for the cobordism 
if'[,i+ l, then 

1 ~  r (l~aT+l)2 + n n 2 k k _ ~ (li+lal) (mod 4a) (6.41) 

Finally the formula (6.37) is factorized completely with respect to the bound- 
ary components of  cobordism "s Wi,i+l. Then we have 

~Lt(l_ k) = Ci ,  i+ 1 e x p [ - ( l i ~ + O  2 - (17+laT) 2] 

= C,.,i+l exp - CS(L(a~, b~)) - -~ CS(L(~§ b7§ (6.42) 

where C$(L(a, b)) is the Chern-Simons invariant of  the lens space L(a, b) 
(Kirk and Klassen, 1990). 

According to the general method (see Section 5), we glue collars to ~i. 
and ~out. Along these collars the connections A i" and A ~ reduce to the trivial 
connection O in accordance with (5.3) and (5.4). Then it is possible to paste 
up the new boundaries by the "ends" El. • R_ and E ~ • R+ with the 
Lorentzian signature. In this case the topology change amplitude of  the process 

(~i")Lor ---> (E~ (6.43) 

[through Euclidean instanton ^" Wi.i+l with a fiat SO(3)-connection in the sta- 
tionary phase approximation] is 

'Q'kP[~rs'i+l] : 1 ~ n C(l~-l' l,, 1,+1, 17+2) 
( l i-  , li, li+ 1,1i+2) (li,/~/+ 1) 

e x p [ -  (l~aT+ 1) 2 - (l~+ la'~) 2] (6.44) 

where the summations are taken over the admissible collections of rotation 
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numbers (6 -1, li, li+l, 1~+2), (6 -1, 6,/n+l) and (l~, li+ l, /7+ 2), which fix the flat 
connections over Xi,i+l, Xi, and 2~i+1, respectively. Thus the flat connection 
contribution to the topology change amplitude of  the process (4.16) 

(Sfh-sphere) --> (two Sfh-spheres) 

is expressed, up to the constant 

C4 = X C(l~ -1, li, li+l, ln+2) (6.45) 
(/I-I, lb li+ l,~i+ 2) 

by the amplitude of  topology transformation 

(vacuum) ---) (two lens spaces) 

which is 

~[ff'I,,'+l] = ~ C4exp[-(l~a']+OZ-(l']+la'~) z] 
(?t,~+ 0 

= ~ C4 exp - CS(L(a~, bi)) - -~ CS(L(a':§ ~§ (6.46) 
<d.#+1) 

It is possible to generalize these amplitudes to the case of  creation of  a 
universe with the spatial section homeomorphic to the Sfh-sphere Z a(_q) = 
E(al . . . . .  a.) out of (n - 2) simplest Sfh-spheres (4.5) with three exceptional 
orbits (Saveliev, 1992): 

n - 2  

Z i" = I I  Z(a~, ai+l, a~'+2) ---> E(al . . . . .  a.) = Eout (6.47) 
i = l  

In this situation the topology change amplitude also factorizes and is given by 

n - 2  
�9 [lVS(a,,.. a,,)] = ~] Cn VI _ i n z ., exp[ (llai+l) -- (/7/+1a7) z] 

(~,~+1) i=l 

where 

X (7. I-] exp - CS(L(a~, b~)) - -~ CS(L(a':+b b']+l)) 
i=1 

(6.48) 

C. = ~ C(l, . . . . .  l,,) (6.49) 
(ll ,...,In) 

The summations in (6.48) are taken over all pairs (1], li% I )  which are contained 
in the admissible collections (l], li+l, 1i%2), i = 1 . . . . .  n -- 2. In (6.49) the 
summation is taken over all admissible collections (_0 = (li . . . . .  ln) (Fintushel 
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and Stern, 1990; Saveliev, 1992). We recall that in the cobordism WS(a~, 
. . . .  an) the rotation numbers are "translated" through the lens spaces L(ai, 
bi),i = I . . . . .  n. 

7. DISCUSSION AND CONCLUSION 

Factorization of topology changing amplitudes has been obtained by 
Birmingham (1995) for a cone on the disjoint union of lens spaces within 
the Regge calculus approach in the frame of the simplicial minisuperspace 
approximation. Birmingham indicated that this factorization property is a 
direct consequence of the restrictive nature of Wheeler-DeWitt minisuper- 
space and the simplicity of the cone-type cobordism. We have complicated 
the topology of cobordism and changed the approximation. However, the 
factorization properties are conserved both in the case of topology change 
(6.17) (vacuum) --~ (Sfh-sphere) [thanks to (6.24)] and for the processes of 
splitting or fusion (creation) of a universe which were investigated in Section 
6.3 [due to congruences of type (6.41)]. It is interesting that the Hattie- 
Hawking-type wave functions (6.26) or (6.27) describe the creation of a 
universe with its spatial section homeomorphic to the Sfh-sphere E(at . . . . .  
an), through the cone c * [.-lin=l L(ai, bi) on the lens spaces. The variety of 
the topology properties of this universe is determined first of all by the 
pairwise relative prime numbers (at . . . . .  an). What physical quantities may 
correspond to functions of the collection (at . . . . .  a,)? The author hopes 
that these quantities would be the coupling constants of the fundamental 
interactions. Some ideas on this point may be found in Efremov and Shchyo- 
tochkin (1986). Moreover, in the models studied in this article (see Section 
6), the cosmological constant in Kodama's solution is assumed to be equal 
to the minimal value (6.21) of the Chern-Simons invariant of the topology 
change cobordism. This approach to the definition of the cosmological con- 
stant is based on the internal logic of our models, since it is necessary to 
avoid uncertainty in the topology changing amplitudes in the Euclidean 
regime. If one could justify this point more strictly, a new path would be 
probably open to evaluate the other fundamental coupling constants [first of 
all, the gravitational constant (Weinberg, 1989)] by means of the topological 
invariants of cobordisms describing topology changes. 

Since the ensemble of homology spheres and lens spaces is considerably 
richer in topology invariants in comparison to the ensemble of the spatial 
sections of n-handles [n = 1, 2, 3; see, for example, Mandelbaum (1978), 
Chapter 3], such an approach to the problem of fixing coupling constants 
(Weinberg, 1989) is more realistic in the case of our ensemble. 
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